Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Climate and disturbance influence self-sustaining stand dynamics of aspen (Populus tremuloides) near its range margin.

Identifieur interne : 000A80 ( Main/Exploration ); précédent : 000A79; suivant : 000A81

Climate and disturbance influence self-sustaining stand dynamics of aspen (Populus tremuloides) near its range margin.

Auteurs : Douglas J. Shinneman [États-Unis] ; Susan K. Mcilroy [États-Unis]

Source :

RBID : pubmed:31188492

Descripteurs français

English descriptors

Abstract

Species that are primarily seral may form stable (self-sustaining) communities under certain disturbance regimes or environmental conditions, yet such populations may also be particularly vulnerable to ecological change. Aspen (Populus spp.) are generally considered seral throughout the Northern Hemisphere, including P. tremuloides, the most widely distributed tree species in North America. Recent declines in aspen populations have occurred, especially along drought-sensitive margins of its range and where fire exclusion and herbivory have promoted community transition. However, aspen also forms stable stands, and examination of the mechanisms that influence persistence can offer conservation insights, especially where populations are vulnerable to changing climate or altered disturbance dynamics. We sampled tree age and stand characteristics of isolated aspen forests in the arid Great Basin (USA) to determine if (1) aspen communities are more fire-dependent and seral or fire-independent and stable; (2) ungulate browsing inhibits aspen stability; and (3) temporal patterns of vegetative reproduction (i.e., ramet establishment or "suckering") are correlated with climate. Aspen size and age class densities strongly fit negative exponential distributions, whether grouped geographically or by functional type, suggesting landscape-scale persistence. Continuous age distributions and high proportions of recruitment-sized to overstory trees suggest stability at stand scales, with exceptions including stands with higher browsing pressure. Few stands had evidence of fire, and relationships between dead tree size and variability in live tree size suggest a lack of fire dependency. Several 5-yr averaged climate variables and one sea surface temperature index were correlated with aspen ramet establishment densities over time, with strongest relationships occurring ~5 yr prior to establishment year, often followed by inverse relationships ~1 yr after. Indeed, aspen establishment density for a recent 41-yr period was reliably reconstructed using antecedent climate conditions derived from a single drought index. Temporally synchronized aspen ramet establishment across the study region may be due to climate-driven storage of nonstructural carbohydrate reserves in clonal root systems later used for regeneration. Complex regeneration dynamics of these self-sustaining aspen stands, especially sensitivity to climate variability, suggest they may serve as harbingers of ecological change in the arid Great Basin and in other aspen populations near their range margin.

DOI: 10.1002/eap.1948
PubMed: 31188492


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Climate and disturbance influence self-sustaining stand dynamics of aspen (Populus tremuloides) near its range margin.</title>
<author>
<name sortKey="Shinneman, Douglas J" sort="Shinneman, Douglas J" uniqKey="Shinneman D" first="Douglas J" last="Shinneman">Douglas J. Shinneman</name>
<affiliation wicri:level="1">
<nlm:affiliation>U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, Idaho, 83706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, Idaho, 83706</wicri:regionArea>
<wicri:noRegion>83706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mcilroy, Susan K" sort="Mcilroy, Susan K" uniqKey="Mcilroy S" first="Susan K" last="Mcilroy">Susan K. Mcilroy</name>
<affiliation wicri:level="1">
<nlm:affiliation>U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, Idaho, 83706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, Idaho, 83706</wicri:regionArea>
<wicri:noRegion>83706</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31188492</idno>
<idno type="pmid">31188492</idno>
<idno type="doi">10.1002/eap.1948</idno>
<idno type="wicri:Area/Main/Corpus">000844</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000844</idno>
<idno type="wicri:Area/Main/Curation">000844</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000844</idno>
<idno type="wicri:Area/Main/Exploration">000844</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Climate and disturbance influence self-sustaining stand dynamics of aspen (Populus tremuloides) near its range margin.</title>
<author>
<name sortKey="Shinneman, Douglas J" sort="Shinneman, Douglas J" uniqKey="Shinneman D" first="Douglas J" last="Shinneman">Douglas J. Shinneman</name>
<affiliation wicri:level="1">
<nlm:affiliation>U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, Idaho, 83706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, Idaho, 83706</wicri:regionArea>
<wicri:noRegion>83706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mcilroy, Susan K" sort="Mcilroy, Susan K" uniqKey="Mcilroy S" first="Susan K" last="Mcilroy">Susan K. Mcilroy</name>
<affiliation wicri:level="1">
<nlm:affiliation>U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, Idaho, 83706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, Idaho, 83706</wicri:regionArea>
<wicri:noRegion>83706</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecological applications : a publication of the Ecological Society of America</title>
<idno type="ISSN">1051-0761</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Climate (MeSH)</term>
<term>Forests (MeSH)</term>
<term>North America (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amérique du Nord (MeSH)</term>
<term>Arbres (MeSH)</term>
<term>Climat (MeSH)</term>
<term>Forêts (MeSH)</term>
<term>Populus (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>North America</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate</term>
<term>Forests</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amérique du Nord</term>
<term>Arbres</term>
<term>Climat</term>
<term>Forêts</term>
<term>Populus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Species that are primarily seral may form stable (self-sustaining) communities under certain disturbance regimes or environmental conditions, yet such populations may also be particularly vulnerable to ecological change. Aspen (Populus spp.) are generally considered seral throughout the Northern Hemisphere, including P. tremuloides, the most widely distributed tree species in North America. Recent declines in aspen populations have occurred, especially along drought-sensitive margins of its range and where fire exclusion and herbivory have promoted community transition. However, aspen also forms stable stands, and examination of the mechanisms that influence persistence can offer conservation insights, especially where populations are vulnerable to changing climate or altered disturbance dynamics. We sampled tree age and stand characteristics of isolated aspen forests in the arid Great Basin (USA) to determine if (1) aspen communities are more fire-dependent and seral or fire-independent and stable; (2) ungulate browsing inhibits aspen stability; and (3) temporal patterns of vegetative reproduction (i.e., ramet establishment or "suckering") are correlated with climate. Aspen size and age class densities strongly fit negative exponential distributions, whether grouped geographically or by functional type, suggesting landscape-scale persistence. Continuous age distributions and high proportions of recruitment-sized to overstory trees suggest stability at stand scales, with exceptions including stands with higher browsing pressure. Few stands had evidence of fire, and relationships between dead tree size and variability in live tree size suggest a lack of fire dependency. Several 5-yr averaged climate variables and one sea surface temperature index were correlated with aspen ramet establishment densities over time, with strongest relationships occurring ~5 yr prior to establishment year, often followed by inverse relationships ~1 yr after. Indeed, aspen establishment density for a recent 41-yr period was reliably reconstructed using antecedent climate conditions derived from a single drought index. Temporally synchronized aspen ramet establishment across the study region may be due to climate-driven storage of nonstructural carbohydrate reserves in clonal root systems later used for regeneration. Complex regeneration dynamics of these self-sustaining aspen stands, especially sensitivity to climate variability, suggest they may serve as harbingers of ecological change in the arid Great Basin and in other aspen populations near their range margin.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">31188492</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1051-0761</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Ecological applications : a publication of the Ecological Society of America</Title>
<ISOAbbreviation>Ecol Appl</ISOAbbreviation>
</Journal>
<ArticleTitle>Climate and disturbance influence self-sustaining stand dynamics of aspen (Populus tremuloides) near its range margin.</ArticleTitle>
<Pagination>
<MedlinePgn>e01948</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/eap.1948</ELocationID>
<Abstract>
<AbstractText>Species that are primarily seral may form stable (self-sustaining) communities under certain disturbance regimes or environmental conditions, yet such populations may also be particularly vulnerable to ecological change. Aspen (Populus spp.) are generally considered seral throughout the Northern Hemisphere, including P. tremuloides, the most widely distributed tree species in North America. Recent declines in aspen populations have occurred, especially along drought-sensitive margins of its range and where fire exclusion and herbivory have promoted community transition. However, aspen also forms stable stands, and examination of the mechanisms that influence persistence can offer conservation insights, especially where populations are vulnerable to changing climate or altered disturbance dynamics. We sampled tree age and stand characteristics of isolated aspen forests in the arid Great Basin (USA) to determine if (1) aspen communities are more fire-dependent and seral or fire-independent and stable; (2) ungulate browsing inhibits aspen stability; and (3) temporal patterns of vegetative reproduction (i.e., ramet establishment or "suckering") are correlated with climate. Aspen size and age class densities strongly fit negative exponential distributions, whether grouped geographically or by functional type, suggesting landscape-scale persistence. Continuous age distributions and high proportions of recruitment-sized to overstory trees suggest stability at stand scales, with exceptions including stands with higher browsing pressure. Few stands had evidence of fire, and relationships between dead tree size and variability in live tree size suggest a lack of fire dependency. Several 5-yr averaged climate variables and one sea surface temperature index were correlated with aspen ramet establishment densities over time, with strongest relationships occurring ~5 yr prior to establishment year, often followed by inverse relationships ~1 yr after. Indeed, aspen establishment density for a recent 41-yr period was reliably reconstructed using antecedent climate conditions derived from a single drought index. Temporally synchronized aspen ramet establishment across the study region may be due to climate-driven storage of nonstructural carbohydrate reserves in clonal root systems later used for regeneration. Complex regeneration dynamics of these self-sustaining aspen stands, especially sensitivity to climate variability, suggest they may serve as harbingers of ecological change in the arid Great Basin and in other aspen populations near their range margin.</AbstractText>
<CopyrightInformation>Published 2019. This article is a U.S. Government work and is in the public domain in the USA.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shinneman</LastName>
<ForeName>Douglas J</ForeName>
<Initials>DJ</Initials>
<Identifier Source="ORCID">0000-0002-4909-5181</Identifier>
<AffiliationInfo>
<Affiliation>U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, Idaho, 83706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McIlroy</LastName>
<ForeName>Susan K</ForeName>
<Initials>SK</Initials>
<AffiliationInfo>
<Affiliation>U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, Idaho, 83706, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecol Appl</MedlineTA>
<NlmUniqueID>9889808</NlmUniqueID>
<ISSNLinking>1051-0761</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002980" MajorTopicYN="N">Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009656" MajorTopicYN="N" Type="Geographic">North America</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="Y">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus tremuloides </Keyword>
<Keyword MajorTopicYN="Y">Palmer Drought Severity Index</Keyword>
<Keyword MajorTopicYN="Y">aspen</Keyword>
<Keyword MajorTopicYN="Y">clone</Keyword>
<Keyword MajorTopicYN="Y">fire</Keyword>
<Keyword MajorTopicYN="Y">nonstructural carbohydrates</Keyword>
<Keyword MajorTopicYN="Y">recruitment</Keyword>
<Keyword MajorTopicYN="Y">regeneration</Keyword>
<Keyword MajorTopicYN="Y">sea surface temperatures</Keyword>
<Keyword MajorTopicYN="Y">seral</Keyword>
<Keyword MajorTopicYN="Y">succession</Keyword>
<Keyword MajorTopicYN="Y">ungulate browsing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31188492</ArticleId>
<ArticleId IdType="doi">10.1002/eap.1948</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>Literature Cited</Title>
<Reference>
<Citation>Alexander, R. R., R. C. Shearer, and W. D. Shepperd. 1984. Silvical characteristics of subalpine fir. General Technical Report RM-115. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. Fort Collins, Colorado, USA.</Citation>
</Reference>
<Reference>
<Citation>Anderegg, W. R. L., L. D. L. Anderegg, C. Sherman, and D. S. Karp. 2012. Effects of widespread drought-induced aspen mortality on understory plants. Conservation Biology 26:1082-1090.</Citation>
</Reference>
<Reference>
<Citation>Anderegg, W. R. L., L. Plavcová, L. D. L. Anderegg, U. G. Hacke, J. A. Berry, and C. B. Field. 2013. Drought's legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Global Change Biology 19:1188-1196.</Citation>
</Reference>
<Reference>
<Citation>Anderegg, W. R. L., L. D. L. Anderegg, J. A. Berry, and C. B. Field. 2014. Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off. Oecologia 175:11-23.</Citation>
</Reference>
<Reference>
<Citation>Baker, F. S. 1925. Aspen in the central Rocky Mountain region. USDA Department Bulletin No. 1291. US Government Printing Office, Washington, D.C., USA.</Citation>
</Reference>
<Reference>
<Citation>Baker, W. L., J. A. Munroe, and A. E. Hessl. 1997. The effects of elk on aspen in the winter range in Rocky Mountain National Park. Ecography 20:155-165.</Citation>
</Reference>
<Reference>
<Citation>Balch, J. K., B. A. Bradley, C. M. D'Antonio, and J. Gómez-Dans. 2013. Introduced annual grass increases regional fire activity across the arid western USA (1980-2009). Global Change Biology 19:173-183.</Citation>
</Reference>
<Reference>
<Citation>Bartos, D. L., and R. B. J. Campbell. 1998. Decline of quaking aspen in the Interior West-examples from Utah. Rangelands 20:17-24.</Citation>
</Reference>
<Reference>
<Citation>Bartos, D. L., and W. F. Mueggler. 1981. Early succession in aspen communities following fire in western Wyoming. Journal of Range Management 34:315-318.</Citation>
</Reference>
<Reference>
<Citation>Bazzaz, F. A. 1979. The physiological ecology of plant succession. Annual Review of Ecology and Systematics 10:351-371.</Citation>
</Reference>
<Reference>
<Citation>Beaty, M., W. Goetz, and J. Gillham. 2004. Mid-scale existing vegetation map. USDA National Forest Service Remote Sensing Applications Center, Salt Lake City, Utah, USA.</Citation>
</Reference>
<Reference>
<Citation>Beschta, R. L., J. B. Kauffman, D. S. Dobkin, and L. M. Ellsworth. 2014. Long-term livestock grazing alters aspen age structure in the northwestern Great Basin. Forest Ecology and Management 329:30-36.</Citation>
</Reference>
<Reference>
<Citation>Betters, D. R., and R. F. Woods. 1981. Uneven-aged stand structure and growth of Rocky Mountain aspen. Journal of Forestry 79:673-676.</Citation>
</Reference>
<Reference>
<Citation>Binkley, D., M. M. Moore, W. H. Romme, and P. M. Brown. 2006. Was Aldo Leopold right about the Kaibab deer herd? Ecosystems 9:227-241.</Citation>
</Reference>
<Reference>
<Citation>Bretfeld, M., J. P. Doerner, and S. B. Franklin. 2015. Radial growth response and vegetative sprouting of aspen following release from competition due to insect-induced conifer mortality. Forest Ecology and Management 347:96-106.</Citation>
</Reference>
<Reference>
<Citation>Brown, J. K., and D. G. Simmerman. 1986. Appraising fuels and flammability in western aspen: a prescribed fire guide. General Technical Report INT-205. USDA Forest Service, Intermountain Research Station, Ogden, Utah, USA.</Citation>
</Reference>
<Reference>
<Citation>Callahan, C. M., C. A. Rowe, R. J. Ryel, J. D. Shaw, M. D. Madritch, and K. E. Mock. 2013. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides). Journal of Biogeography 40:1780-1791.</Citation>
</Reference>
<Reference>
<Citation>Cayan, D. R., T. Das, D. W. Pierce, T. P. Barnett, M. Tyree, and A. Gershunov. 2010. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proceedings of the National Academy of Sciences USA 107:21271-21276.</Citation>
</Reference>
<Reference>
<Citation>Chong, G. W., S. E. Simonson, T. J. Stohlgren, and M. A. Kalkhan. 2001. Biodiversity: aspen stands have the lead, but will nonnative species take over? Pages 261-271 in W. D. Shepperd, D. Binkley, D. L. Bartos, T. J. Stohlgren, and L. G. Eskew, compilers. Sustaining aspen in western landscapes. Symposium proceedings, 13-15 June 2000, Grand Junction, Colorado, USA. Proceedings RMRS-P-18. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA.</Citation>
</Reference>
<Reference>
<Citation>Connell, J. H., and R. O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111:1119-1144.</Citation>
</Reference>
<Reference>
<Citation>Dobkin, D. S., A. C. Rich, J. A. Pretare, and W. H. Pyle. 1995. Nest-site relationships among cavity-nesting birds of riparian and snow pocket aspen woodlands in the northwestern Great Basin. Condor 97:694-707.</Citation>
</Reference>
<Reference>
<Citation>Dudley, M. M., K. S. Burns, and W. R. Jacobi. 2015. Aspen mortality in the Colorado and southern Wyoming Rocky Mountains: Extent, severity, and causal factors. Forest Ecology and Management 353:240-259.</Citation>
</Reference>
<Reference>
<Citation>Duncan, R. P. 1989. An evaluation of errors in tree age estimates based on increment cores in kahikatea (Dacrycarpus dacrydioides). New Zealand Natural Sciences 16:31-37.</Citation>
</Reference>
<Reference>
<Citation>Eidenshink, J., B. Schwind, K. Brewer, Z. L. Zhu, B. Quayle, and S. Howard. 2007. Project for monitoring trends in burn severity. Fire Ecology 3:3-20.</Citation>
</Reference>
<Reference>
<Citation>Elliott, G. P., and W. L. Baker. 2004. Quaking aspen (Populus tremuloides Michx.) at treeline: a century of change in the San Juan Mountains, Colorado, USA. Journal of Biogeography 31:733-745.</Citation>
</Reference>
<Reference>
<Citation>Elliott, G. P., and C. M. Cowell. 2015. Slope aspect mediates fine-scale tree establishment patterns at upper treeline during wet and dry periods of the 20th Century. Arctic, Antarctic, and Alpine Research 47:681-692.</Citation>
</Reference>
<Reference>
<Citation>Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble. 2001. The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental US. Geophysical Research Letters 28:2077-2080.</Citation>
</Reference>
<Reference>
<Citation>Fraser, E. C., V. J. Lieffers, S. M. Landhäusser, and B. R. Frey. 2002. Soil nutrition and temperature as drivers of root suckering in trembling aspen. Canadian Journal of Forest Research 32:1685-1691.</Citation>
</Reference>
<Reference>
<Citation>Freund, J. A., J. F. Franklin, and J. A. Lutz. 2015. Structure of early old-growth Douglas-fir forests in the Pacific Northwest. Forest Ecology and Management 335:11-25.</Citation>
</Reference>
<Reference>
<Citation>Frey, B. R., V. J. Lieffers, S. M. Landhäusser, P. G. Comeau, and K. J. Greenway. 2003. An analysis of sucker regeneration of trembling aspen. Canadian Journal of Forest Research 33:1169-1179.</Citation>
</Reference>
<Reference>
<Citation>Garbarino, M., R. Marzano, J. D. Shaw, and J. N. Long. 2015. Environmental drivers of deadwood dynamics in woodlands and forests. Ecosphere 6:1-24.</Citation>
</Reference>
<Reference>
<Citation>Hartmann, H., and S. Trumbore. 2016. Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know. New Phytologist 211:386-403.</Citation>
</Reference>
<Reference>
<Citation>Hessl, A. E., and L. J. Graumlich. 2002. Interactive effects of human activities, herbivory and fire on quaking aspen (Populus tremuloides) age structures in western Wyoming. Journal of Biogeography 29:889-902.</Citation>
</Reference>
<Reference>
<Citation>Hogg, E. H., J. P. Brandt, and M. Michaelian. 2008. Impacts of a regional drought on the productivity, dieback, and biomass of western Canadian aspen forests. Canadian Journal of Forest Research 38:1373-1384.</Citation>
</Reference>
<Reference>
<Citation>Jones, J. R., and N. V. DeByle. 1985. Fire. Pages 77-81 in N. V. DeByle and R. P. Winokur, editors. Aspen: ecology and management in the western United States. General Technical Report RM-119. U.S. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA.</Citation>
</Reference>
<Reference>
<Citation>Jones, J. R., M. R. Kaufmann, and E. A. Richardson. 1985. Effects of water and temperature. Pages 77-81 in N. V. DeByle and R. P. Winokur, editors. Aspen: ecology and management in the western United States. U.S. Department of Agriculture Forest Service General Technical Report RM-119. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest & Range Experimental Station, Fort Collins, Colorado, USA.</Citation>
</Reference>
<Reference>
<Citation>Kashian, D. M., W. H. Romme, and C. M. Regan. 2007. Reconciling divergent interpretations of quaking aspen decline on the northern Colorado Front Range. Ecological Applications 17:1296-1311.</Citation>
</Reference>
<Reference>
<Citation>Kaye, M. W. 2011. Mesoscale synchrony in quaking aspen establishment across the interior western US. Forest Ecology and Management 262:389-397.</Citation>
</Reference>
<Reference>
<Citation>Kaye, M. W., T. J. Stohlgren, and D. Binkley. 2003. Aspen structure and variability in Rocky Mountain National Park, Colorado, USA. Landscape Ecology 18:591-603.</Citation>
</Reference>
<Reference>
<Citation>Kemperman, J. A., and B. V. Barnes. 1976. Clone size in American aspens. Canadian Journal of Botany 54:2603-2607.</Citation>
</Reference>
<Reference>
<Citation>Klos, P. Z., T. E. Link, and J. T. Abatzoglou. 2014. Extent of the rain-snow transition zone in the western U.S. under historic and projected climate. Geophysical Research Letters 41:2014GL060500.</Citation>
</Reference>
<Reference>
<Citation>Kuhn, T. J., H. D. Safford, B. E. Jones, and K. W. Tate. 2011. Aspen (Populus tremuloides) stands and their contribution to plant diversity in a semiarid coniferous landscape. Plant Ecology 212:1451-1463.</Citation>
</Reference>
<Reference>
<Citation>Kulakowski, D., T. T. Veblen, and S. Drinkwater. 2004. The persistence of quaking aspen (Populus tremuloides) in the Grand Mesa Area, Colorado. Ecological Applications 14:1603-1614.</Citation>
</Reference>
<Reference>
<Citation>Kurzel, B. P., T. T. Veblen, and D. Kulakowski. 2007. A typology of stand structure and dynamics of Quaking aspen in northwestern Colorado. Forest Ecology and Management 252:176-190.</Citation>
</Reference>
<Reference>
<Citation>Landhäusser, S. M., and V. J. Lieffers. 2002. Leaf area renewal, root retention and carbohydrate reserves in a clonal tree species following above-ground disturbance. Journal of Ecology 90:658-665.</Citation>
</Reference>
<Reference>
<Citation>Landhäusser, S. M., and V. J. Lieffers. 2003. Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees-Structure and Function 17:471-476.</Citation>
</Reference>
<Reference>
<Citation>Landhäusser, S. M., B. D. Pinno, and K. E. Mock. 2019. Tamm Review: Seedling-based ecology, management, and restoration in aspen (Populus tremuloides). Forest Ecology and Management 432:231-245.</Citation>
</Reference>
<Reference>
<Citation>Larsen, E. J., and W. J. Ripple. 2003. Aspen age structure in the northern Yellowstone ecosystem: USA. Forest Ecology and Management 179:469-482.</Citation>
</Reference>
<Reference>
<Citation>Little, E. L. 1971. Atlas of United States trees, volume 1, conifers and important hardwoods. Miscellaneous Publication 1146. USDA, Washington, D.C., USA.</Citation>
</Reference>
<Reference>
<Citation>Maini, J. S., and K. W. Horton. 1966. Vegetative propagation of Populus spp. I. Influence of temperature on formation and initial growth of aspen suckers. Canadian Journal of Botany 44:1183-1189.</Citation>
</Reference>
<Reference>
<Citation>Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis. 1997. A pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78:1069-1080.</Citation>
</Reference>
<Reference>
<Citation>McCabe, G. J., M. A. Palecki, and J. L. Betancourt. 2004. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proceedings of the National Academy of Sciences USA 101:4136-4141.</Citation>
</Reference>
<Reference>
<Citation>McNab, W. H., D. T. Cleland, J. A. Freeouf, J. E. Keys Jr., G. J. Nowacki, and C. A. Carpenter, compilers. 2007. Description of ecological subregions: sections of the conterminous United States. General Technical Report WO-76B. USDA Forest Service, Washington, D.C., USA.</Citation>
</Reference>
<Reference>
<Citation>McNaughton, S. J. 1983. Compensatory plant growth as a response to herbivory. Oikos 40:329-336.</Citation>
</Reference>
<Reference>
<Citation>Minckley, T. A., C. Whitlock, and P. J. Bartlein. 2007. Vegetation, fire, and climate history of the northwestern Great Basin during the last 14,000 years. Quaternary Science Reviews 26:2167-2184.</Citation>
</Reference>
<Reference>
<Citation>Mock, K. E., C. A. Rowe, M. B. Hooten, J. Dewoody, and V. D. Hipkins. 2008. Clonal dynamics in western North American aspen (Populus tremuloides). Molecular Ecology 17:4827-4844.</Citation>
</Reference>
<Reference>
<Citation>Mueggler, W. F. 1989. Age distribution and reproduction of intermountain aspen stands. Western Journal of Applied Forestry 4:41-45.</Citation>
</Reference>
<Reference>
<Citation>Myking, T., F. Bohler, G. Austrheim, and E. J. Solberg. 2011. Life history strategies of aspen (Populus tremula L.) and browsing effects: a literature review. Forestry 84:61-71.</Citation>
</Reference>
<Reference>
<Citation>Nlungu-Kweta, P., A. Leduc, and Y. Bergeron. 2017. Climate and disturbance regime effects on aspen (Populus tremuloides Michx.) stand structure and composition along an east-west transect in Canada's boreal forest. Forestry 90:70-81.</Citation>
</Reference>
<Reference>
<Citation>Palmer, W. C. 1965. Meteorological drought. Research Paper No. 45. Department of Commerce, Washington, D.C., USA.</Citation>
</Reference>
<Reference>
<Citation>Pinheiro, J., D. Bates, S. DebRoy, and D. Sarkar. 2016. nlme: linear and nonlinear mixed effects models. R package version 3.1-120. http://CRAN.R-project.org/package=nlme</Citation>
</Reference>
<Reference>
<Citation>R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/</Citation>
</Reference>
<Reference>
<Citation>Rehfeldt, G. E., D. E. Ferguson, and N. L. Crookston. 2009. Aspen, climate, and sudden decline in western USA. Forest Ecology and Management 258:2353-2364.</Citation>
</Reference>
<Reference>
<Citation>Reinikainen, M., A. W. D'Amato, and S. Fraver. 2012. Repeated insect outbreaks promote multi-cohort aspen mixedwood forests in northern Minnesota, USA. Forest Ecology and Management 266:148-159.</Citation>
</Reference>
<Reference>
<Citation>Ripple, W. J., and E. J. Larsen. 2000. Historic aspen recruitment, elk, and wolves in northern Yellowstone National Park, USA. Biological Conservation 95:361-370.</Citation>
</Reference>
<Reference>
<Citation>Rogers, P. C., and C. M. Mittanck. 2014. Herbivory strains resilience in drought-prone aspen landscapes of the western United States. Journal of Vegetation Science 25:457-469.</Citation>
</Reference>
<Reference>
<Citation>Rogers, P. C., A. J. Leffler, and R. J. Ryel. 2010. Landscape assessment of a stable aspen community in southern Utah, USA. Forest Ecology and Management 259:487-495.</Citation>
</Reference>
<Reference>
<Citation>Rogers, P. C., S. M. Landhäusser, B. D. Pinno, and R. J. Ryel. 2014. A functional framework for improved management of western North American aspen (Populus tremuloides Michx.). Forest Science 60:345-359.</Citation>
</Reference>
<Reference>
<Citation>Romme, W. H., M. G. Turner, L. L. Wallace, and J. S. Walker. 1995. Aspen, elk, and fire in northern Yellowstone Park. Ecology 76:2097-2106.</Citation>
</Reference>
<Reference>
<Citation>Rubin, B. D., P. D. Manion, and D. Faber-Langendoen. 2006. Diameter distributions and structural sustainability in forests. Forest Ecology and Management 222:427-438.</Citation>
</Reference>
<Reference>
<Citation>Schier, G. A., and J. C. Zasada. 1973. Role of carbohydrate reserves in the development of root suckers in Populus tremuloides. Canadian Journal of Forest Research 3:243-250.</Citation>
</Reference>
<Reference>
<Citation>Schier, G. A., J. R. Jones, and R. P. Winokur. 1985. Vegetative regeneration. Pages 29-33 in N. V. DeByle and R. P. Winokur, editors. Aspen: ecology and management in the western United States. General Technical Report RM-119. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA.</Citation>
</Reference>
<Reference>
<Citation>Seager, S. T., C. Eisenberg, and S. B. St. Clair. 2013. Patterns and consequences of ungulate herbivory on aspen in western North America. Forest Ecology and Management 299:81-90.</Citation>
</Reference>
<Reference>
<Citation>Shepperd, W. D., P. C. Rogers, D. Burton, and D. L. Bartos. 2006. Ecology, biodiversity, management, and restoration of aspen in the Sierra Nevada. General Technical Report RMRS-GTR-178. USDA Forest Service, Rocky Mountain Research Station, Ft. Collins, Colorado, USA.</Citation>
</Reference>
<Reference>
<Citation>Sheth, S. N., and A. L. Angert. 2018. Demographic compensation does not rescue populations at a trailing range edge. Proceedings of the National Academy of Sciences USA 115:2413-2418.</Citation>
</Reference>
<Reference>
<Citation>Shinneman, D. J., and W. L. Baker. 2009. Historical fire and multidecadal drought as context for piñon-juniper woodland restoration in western Colorado. Ecological Applications 19:1231-1245.</Citation>
</Reference>
<Reference>
<Citation>Shinneman, D. J., W. L. Baker, P. C. Rogers, and D. Kulakowski. 2013. Fire regimes of quaking aspen in the Mountain West. Forest Ecology and Management 299:22-34.</Citation>
</Reference>
<Reference>
<Citation>Shinneman, D. J., A. S. Halford, C. Howell, K. D. Krasnow, and E. K. Strand. 2016. Management of aspen in a changing environment. Pages 60-67 in J. Chambers, editor. Great basin factsheet series number 12. Great Basin Fire Science Exchange, Reno, Nevada, USA.</Citation>
</Reference>
<Reference>
<Citation>Smith, E. A., D. O'Loughlin, J. R. Buck, and S. B. St. Clair. 2011. The influences of conifer succession, physiographic conditions and herbivory on quaking aspen regeneration after fire. Forest Ecology and Management 262:325-330.</Citation>
</Reference>
<Reference>
<Citation>Soderquist, B. S., K. L. Kavanagh, T. E. Link, M. S. Seyfried, and A. H. Winstral. 2018. Simulating the dependence of aspen (Populus tremuloides) on redistributed snow in a semi-arid watershed. Ecosphere 9:1-19.</Citation>
</Reference>
<Reference>
<Citation>Stenvall, N., M. Piisilä, and P. Pulkkinen. 2009. Seasonal fluctuation of root carbohydrates in hybrid aspen clones and its relationship to the sprouting efficiency of root cuttings. Canadian Journal of Forest Research 39:1531-1537.</Citation>
</Reference>
<Reference>
<Citation>Stokes, M. A., and T. L. Smiley. 1968. An introduction to tree-ring dating. University of Chicago Press, Chicago, Illinois, USA.</Citation>
</Reference>
<Reference>
<Citation>Strand, E. K., L. A. Vierling, S. C. Bunting, and P. E. Gessler. 2009. Quantifying successional rates in western aspen woodlands: Current conditions, future predictions. Forest Ecology and Management 257:1705-1715.</Citation>
</Reference>
<Reference>
<Citation>Swetnam, T. W., and J. L. Betancourt. 1998. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. Journal of Climate 11:3128-3147.</Citation>
</Reference>
<Reference>
<Citation>Tomback, D. F., P. Achuff, A. W. Schoettle, J. W. Schwandt, and R. J. Mastrogiuseppe. 2011. The magnificent high-elevation five-needle white pines: ecological roles and future outlook. Pages 2-28 in R. E. Keane, D. F. Tomback, M. P. Murray, and C. M. Smith, editors. The future of high-elevation five-needle white pines in western North America: symposium proceedings, June 28-30, 2010. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA.</Citation>
</Reference>
<Reference>
<Citation>Van Wagner, C. E. 1978. Age-class distribution and the forest fire cycle. Canadian Journal of Forest Research 8:220-227.</Citation>
</Reference>
<Reference>
<Citation>Wall, T. G., R. F. Miller, and T. J. Svejcar. 2001. Juniper encroachment into aspen in the northwest Great Basin. Journal of Range Management 54:691-698.</Citation>
</Reference>
<Reference>
<Citation>Wells, P. V. 1983. Paleobiogeography of montane islands in the Great Basin since the last glaciopluvial. Ecological Monographs 53:341-382.</Citation>
</Reference>
<Reference>
<Citation>Welty, J. L., D. S. Pilliod, and R. S. Arkle. 2017. Combined wildfire dataset for the United States and certain territories, 1870-2015: U.S. Geological Survey data release. https://doi.org/10.5066/f75h7f5m</Citation>
</Reference>
<Reference>
<Citation>Worrall, J. J., L. Egeland, T. Eager, R. A. Mask, E. W. Johnson, P. A. Kemp, and W. D. Shepperd. 2008. Rapid mortality of Populus tremuloides in southwestern Colorado, USA. Forest Ecology and Management 255:686-696.</Citation>
</Reference>
<Reference>
<Citation>Yu, L., S. Zhong, W. E. Heilman, and X. Bian. 2018. Trends in seasonal warm anomalies across the contiguous United States: Contributions from natural climate variability. Scientific Reports 8:3435.</Citation>
</Reference>
<Reference>
<Citation>Zegler, T. J., M. M. Moore, M. L. Fairweather, K. B. Ireland, and P. Z. Fulé. 2012. Populus tremuloides mortality near the southwestern edge of its range. Forest Ecology and Management 282:196-207.</Citation>
</Reference>
<Reference>
<Citation>Zier, J. L., and W. L. Baker. 2006. A century of vegetation change in the San Juan Mountains, Colorado: An analysis using repeat photography. Forest Ecology and Management 228:251-262.</Citation>
</Reference>
<Reference>
<Citation>Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effects models and extensions in ecology with R. Springer Sciences & Business Media, New York, New York, USA.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Shinneman, Douglas J" sort="Shinneman, Douglas J" uniqKey="Shinneman D" first="Douglas J" last="Shinneman">Douglas J. Shinneman</name>
</noRegion>
<name sortKey="Mcilroy, Susan K" sort="Mcilroy, Susan K" uniqKey="Mcilroy S" first="Susan K" last="Mcilroy">Susan K. Mcilroy</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A80 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A80 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31188492
   |texte=   Climate and disturbance influence self-sustaining stand dynamics of aspen (Populus tremuloides) near its range margin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31188492" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020